A cost-sensitive decision tree approach for fraud detection
نویسندگان
چکیده
With the developments in the information technology, fraud is spreading all over the world, resulting in huge financial losses. Though fraud prevention mechanisms such as CHIP&PIN are developed for credit card systems, these mechanisms do not prevent the most common fraud types such as fraudulent credit card usages over virtual POS (Point Of Sale) terminals or mail orders so called online credit card fraud. As a result, fraud detection becomes the essential tool and probably the best way to stop such fraud types. In this study, a new cost-sensitive decision tree approach which minimizes the sum of misclassification costs while selecting the splitting attribute at each non-terminal node is developed and the performance of this approach is compared with the well-known traditional classification models on a real world credit card data set. In this approach, misclassification costs are taken as varying. The results show that this cost-sensitive decision tree algorithm outperforms the existing well-known methods on the given problem set with respect to the well-known performance metrics such as accuracy and true positive rate, but also a newly defined cost-sensitive metric specific to credit card fraud detection domain. Accordingly, financial losses due to fraudulent transactions can be decreased more by the implementation of this approach in fraud detection systems. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملFraud Detection by Stacking Cost-Sensitive Decision Trees
Worldwide, billions of euros are lost every year due to credit card fraud. Increasingly, fraud has diversified to different digital channels, including mobile and online payments, creating new challenges as innovative new fraud patterns emerge. Hence, it remains challenging to find effective methods of mitigating fraud. Existing solutions include simple if-then rules and classical machine learn...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملCost-sensitive learning and decision making for massachusetts pip claim fraud data
In many real-life decision making situations the default assumption of equal (mis-)classification costs underlying pattern recognition techniques is most likely violated. Consider the case of insurance claim fraud detection for which an early claim screening facility is to be built to decide upon the nature of an incoming claim as either suspicious or not. This decision typically forms the basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013